In software development, it is common for programmers to copy-paste or port code snippets and then adapt them to their use case. This scenario motivates the code adaptation task -- a variant of program repair which aims to adapt variable identifiers in a pasted snippet of code to the surrounding, preexisting source code. However, no existing approach has been shown to effectively address this task. In this paper, we introduce AdaptivePaste, a learning-based approach to source code adaptation, based on transformers and a dedicated dataflow-aware deobfuscation pre-training task to learn meaningful representations of variable usage patterns. We evaluate AdaptivePaste on a dataset of code snippets in Python. Results suggest that our model can learn to adapt source code with 79.8% accuracy. To evaluate how valuable is AdaptivePaste in practice, we perform a user study with 10 Python developers on a hundred real-world copy-paste instances. The results show that AdaptivePaste reduces the dwell time to nearly half the time it takes for manual code adaptation, and helps to avoid bugs. In addition, we utilize the participant feedback to identify potential avenues for improvement of AdaptivePaste.
translated by 谷歌翻译
协作软件开发是现代软件开发生命周期不可或缺的一部分,这对于大规模软件项目的成功至关重要。当多个开发人员围绕相同的代码进行同时更改时,可能会发生合并冲突。这种冲突停滞不前的请求和连续的集成管道数小时至几天,严重损害了开发人员的生产力。为了解决这个问题,我们介绍了Mergebert,这是一个新型的神经程序合并框架,基于令牌级别的三向差异和变压器编码器模型。通过利用合并冲突决议的受限性质,我们重新制定了将分辨率序列作为分类任务生成的任务,而不是从现实世界合并提交提交数据中提取的一组原始合并模式上进行分类任务。我们的模型可实现合并分辨率合成的63-68%精度,对现有的半结构化的性能提高了近3倍,而对神经程序合并工具的改善为2倍。最后,我们证明Mergebert足够灵活地使用Java,JavaScript,Typescript和C#编程语言中的源代码文件。为了衡量Mergebert的实际使用,我们进行了一项用户研究,以评估Mergebert的建议,其中25位来自大型OSS项目的开发人员在他们遇到的122场现实世界冲突中进行了研究。结果表明,实际上,Mergebert决议将被接受比自动指标估计的精确度和准确性更高的速率。此外,我们使用参与者的反馈来确定未来改善Mergebert的途径。
translated by 谷歌翻译
Inspired by the recent success of Transformers for Natural Language Processing and vision Transformer for Computer Vision, many researchers in the medical imaging community have flocked to Transformer-based networks for various main stream medical tasks such as classification, segmentation, and estimation. In this study, we analyze, two recently published Transformer-based network architectures for the task of multimodal head-and-tumor segmentation and compare their performance to the de facto standard 3D segmentation network - the nnU-Net. Our results showed that modeling long-range dependencies may be helpful in cases where large structures are present and/or large field of view is needed. However, for small structures such as head-and-neck tumor, the convolution-based U-Net architecture seemed to perform well, especially when training dataset is small and computational resource is limited.
translated by 谷歌翻译
In recent years, generative models have undergone significant advancement due to the success of diffusion models. The success of these models is often attributed to their use of guidance techniques, such as classifier and classifier-free methods, which provides effective mechanisms to trade-off between fidelity and diversity. However, these methods are not capable of guiding a generated image to be aware of its geometric configuration, e.g., depth, which hinders the application of diffusion models to areas that require a certain level of depth awareness. To address this limitation, we propose a novel guidance approach for diffusion models that uses estimated depth information derived from the rich intermediate representations of diffusion models. To do this, we first present a label-efficient depth estimation framework using the internal representations of diffusion models. At the sampling phase, we utilize two guidance techniques to self-condition the generated image using the estimated depth map, the first of which uses pseudo-labeling, and the subsequent one uses a depth-domain diffusion prior. Experiments and extensive ablation studies demonstrate the effectiveness of our method in guiding the diffusion models toward geometrically plausible image generation. Project page is available at https://ku-cvlab.github.io/DAG/.
translated by 谷歌翻译
How can we accurately identify new memory workloads while classifying known memory workloads? Verifying DRAM (Dynamic Random Access Memory) using various workloads is an important task to guarantee the quality of DRAM. A crucial component in the process is open-set recognition which aims to detect new workloads not seen in the training phase. Despite its importance, however, existing open-set recognition methods are unsatisfactory in terms of accuracy since they fail to exploit the characteristics of workload sequences. In this paper, we propose Acorn, an accurate open-set recognition method capturing the characteristics of workload sequences. Acorn extracts two types of feature vectors to capture sequential patterns and spatial locality patterns in memory access. Acorn then uses the feature vectors to accurately classify a subsequence into one of the known classes or identify it as the unknown class. Experiments show that Acorn achieves state-of-the-art accuracy, giving up to 37% points higher unknown class detection accuracy while achieving comparable known class classification accuracy than existing methods.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Yes. In this paper, we investigate strong lottery tickets in generative models, the subnetworks that achieve good generative performance without any weight update. Neural network pruning is considered the main cornerstone of model compression for reducing the costs of computation and memory. Unfortunately, pruning a generative model has not been extensively explored, and all existing pruning algorithms suffer from excessive weight-training costs, performance degradation, limited generalizability, or complicated training. To address these problems, we propose to find a strong lottery ticket via moment-matching scores. Our experimental results show that the discovered subnetwork can perform similarly or better than the trained dense model even when only 10% of the weights remain. To the best of our knowledge, we are the first to show the existence of strong lottery tickets in generative models and provide an algorithm to find it stably. Our code and supplementary materials are publicly available.
translated by 谷歌翻译
Deep neural networks have been successfully adopted to diverse domains including pathology classification based on medical images. However, large-scale and high-quality data to train powerful neural networks are rare in the medical domain as the labeling must be done by qualified experts. Researchers recently tackled this problem with some success by taking advantage of models pre-trained on large-scale general domain data. Specifically, researchers took contrastive image-text encoders (e.g., CLIP) and fine-tuned it with chest X-ray images and paired reports to perform zero-shot pathology classification, thus completely removing the need for pathology-annotated images to train a classification model. Existing studies, however, fine-tuned the pre-trained model with the same contrastive learning objective, and failed to exploit the multi-labeled nature of medical image-report pairs. In this paper, we propose a new fine-tuning strategy based on sentence sampling and positive-pair loss relaxation for improving the downstream zero-shot pathology classification performance, which can be applied to any pre-trained contrastive image-text encoders. Our method consistently showed dramatically improved zero-shot pathology classification performance on four different chest X-ray datasets and 3 different pre-trained models (5.77% average AUROC increase). In particular, fine-tuning CLIP with our method showed much comparable or marginally outperformed to board-certified radiologists (0.619 vs 0.625 in F1 score and 0.530 vs 0.544 in MCC) in zero-shot classification of five prominent diseases from the CheXpert dataset.
translated by 谷歌翻译
Detection Transformer (DETR) directly transforms queries to unique objects by using one-to-one bipartite matching during training and enables end-to-end object detection. Recently, these models have surpassed traditional detectors on COCO with undeniable elegance. However, they differ from traditional detectors in multiple designs, including model architecture and training schedules, and thus the effectiveness of one-to-one matching is not fully understood. In this work, we conduct a strict comparison between the one-to-one Hungarian matching in DETRs and the one-to-many label assignments in traditional detectors with non-maximum supervision (NMS). Surprisingly, we observe one-to-many assignments with NMS consistently outperform standard one-to-one matching under the same setting, with a significant gain of up to 2.5 mAP. Our detector that trains Deformable-DETR with traditional IoU-based label assignment achieved 50.2 COCO mAP within 12 epochs (1x schedule) with ResNet50 backbone, outperforming all existing traditional or transformer-based detectors in this setting. On multiple datasets, schedules, and architectures, we consistently show bipartite matching is unnecessary for performant detection transformers. Furthermore, we attribute the success of detection transformers to their expressive transformer architecture. Code is available at https://github.com/jozhang97/DETA.
translated by 谷歌翻译
In this report, I address auto-formulation of problem description, the task of converting an optimization problem into a canonical representation. I first simplify the auto-formulation task by defining an intermediate representation, then introduce entity tag embedding to utilize a given entity tag information. The ablation study demonstrate the effectiveness of the proposed method, which finally took second place in NeurIPS 2022 NL4Opt competition subtask 2.
translated by 谷歌翻译